
Assembly-line Driven Development

David P. Brown (sqa@compumonk.com)

More With Less

 Feeling squeezed?

 Market rapidly
changing

 Business forced to do
more with less

 Current solutions not
effective

 Is testing really
valued, or a
necessary evil?

More With Less

 During the 1950s, US went through a
manufacturing boom

 Europe’s capacity for manufacturing
was decimated by WW II

 US could make anything, and the
world was buying

 As the decade ended, Japan came out
of nowhere with innovative products,
lower cost and better quality

More With Less

 What happened?

More With Less

 US producing products with little
innovation and poor quality

 Quality efforts focused on inspections
with some estimates at 38% rejection
rate

 Costs inflated to compensate

 Japan changed, the US was behind
the curve

 What was the catalyst of this change?

More With Less

More With Less

 Key Industry Issues

 Dependence on requirements

 Management by performance/quotas

 Focus on quality through inspection

 Competition within

 High management turnover

 Little transfer of knowledge

More With Less

 Software Development Weaknesses

 Dependency on requirements

 Management by performance/quotas

 Focus on quality through testing

 Competition within

 High management/talent turnover

 Little transfer of knowledge

More With Less

 The manufacturing industry changed
quickly and radically

 Those that did not are in the dustbin
of history

 The software development discipline
must change as well

 Bending the cost curve

 Iterative Development

 RAD

 RUP

 Agile/SCRUM

 Strict cost control/gate processes

 Offshoring

 Have any of these really been
effective?

More With Less

Key Facts

 Software development is still an
artistic venture, a craft

 You cannot test quality into software

 The more time spent on
requirements, the more successful
the project

 Quality is the responsibility of
everyone, not just test

Change

 Deming Management Method

 Identify and reduce variability

 Acquire domain knowledge

 Document and consistently adhere to
process

 Jettison competition

 Eliminate necessity of requirements

 Do away with reliance on individual
effort

 Reduce dependence on testing

Competition

 Competition is a great thing in the
marketplace

 Works well between companies, but
not within companies

 Must break down anything that puts
barriers between stakeholders and
development

 There cannot be one defined
“channel” of stakeholder
communications

Knowledge

 All key workers must have a thorough
understanding of the company’s
domain, business and priorities

 Requires investment a training
regimen managed by the business

 Necessitates less reliance on
contractors, especially in leadership
roles

Process

 People work best under a defined
process

 A process must be simple, easy to
understand and adaptable

 Complex processes, especially those
with fixed and immovable “gates”
breed non-compliance

 Processes must be thoroughly
documented and training provided

Reduce Variability

 Environments (IT)

 Rigidly controlled production
environment

 Well managed test environments

 Configured as close as possible to
production

 Follow same processes as pushes to
production

 Refreshable

Reduce Variability

 Environments (COTS)

 Target consumer representative

 Refreshable

 Same systems available to all

 Virtualization is very effective

Reduce Variability

 Development systems

 Centralized “push a button” build from
source system

 For COTS, include installers

 Rigid check-in processes

 Any change can be tracked to a work
item/requirement or defect repair

 All systems can be accessed by test for
verification/auditing

 Tool automation (reduce admin)

Recap

 Deming Management Method

 Identify and reduce variability

 Acquire domain knowledge

 Document and consistently adhere to
process

 Jettison competition

 Eliminate necessity of requirements

 Do away with reliance on individual
effort

 Reduce dependence on testing

Recap

 Deming Management Method

 Identify and reduce variability

 Acquire domain knowledge

 Document and consistently adhere to
process

 Jettison competition

 Eliminate necessity of requirements

 Do away with reliance on individual
effort

 Reduce dependence on testing

Assembly-line Driven Dev

 Assembly-line Driven Development

 Quality through design instead of formal
inspection (testing)

 Heavy involvement of all players through
the entire lifecycle

 Change accounted for and controlled

 Utilizes a risk-based model

 Minimal end-stage testing

 Concepts we are already familiar with

 It is not “A.D.D.” (although I am)

Assembly-line Driven Dev

 High-level framework

 First cut, needs refinement

 First presentation, ditto above

 Everything presented here has been
used effectively in practice

 Concepts modeled after 40 years of
successful implementation in
manufacturing

 WARNING: Don’t try this at home!

Inception

 “Back of the Box” requirements

 Short, one paragraph, statement of the
intention of the project

 What problem are we trying to solve?

 What need are we trying to fill?

 Timeline for delivery

 High-level bulleted list of features

 Ranked as “Must”, “Should” and “Nice”

 Posted on everyone’s wall!

Inception

 Personas

 Develop one or personas depicting the
target consumer or user

 For a COTS product, might be one well
crafted persona

 For a IT product, will probably be
several

 Posted on everyone’s wall

 Brought to every meeting

 Give them names and personalities!

Source: Todd Warfel "Data Driven Personas”: http://www.slideshare.net/toddwarfel/data-driven-personas

Inception

http://www.slideshare.net/toddwarfel/data-driven-personas
http://www.slideshare.net/toddwarfel/data-driven-personas
http://www.slideshare.net/toddwarfel/data-driven-personas
http://www.slideshare.net/toddwarfel/data-driven-personas
http://www.slideshare.net/toddwarfel/data-driven-personas

Inception

 Initial Narratives

 Short stories developed in partnership or
even by the sponsors

 Tied to the “Back of the Box” bulleted
requirements

 Brings the system to life

 Used as input into the design

Design

 UI Mockups

 Develop UI mockups in Visio, PowerPoint
or even by hand of each interface

 Revise iteratively with the sponsors

 Functional UI Prototypes

 Bring the mockups to life

 Continue to revise iteratively with the
sponsors

 Architecture

 High-level design supporting framework

Design

 Narratives

 Continue to develop and refine
narratives per the evolving UI

 Functional Design

 Screenshots of the UI

 Field descriptions

 Critical business rules

 Map narratives to document sections

 This document comes under change
control

Design

 Benefits

 Compliments the fact that people are
visual by nature

 Sponsors and the development team
both gain insight and understanding of
what can and cannot be accomplished

 Some of the framework can be
developed early when the understanding
is clear

Construction

 Work Breakdown

 Features and functions broken down into
manageable and assignable chunks

 Work prioritized to complete “Must”
items first

Construction

 Test Cases

 Test cases are written using the
functional design and narratives as a
basis

 Organized and mapped to the work
breakdown

 Written in priority order

 Reviewed initially by development

 Reviewed then by the sponsors

 Priority must be placed on reviews!

Construction

 Framework

 While initial set of test cases are being
written, development will be building up
the plumbing

 Functionality

 As areas of the work breakdown have
completed test cases, development
begins work

 Coding uses the test cases as the basis

Construction

 Unit Testing

 Coders use the test cases as their unit
testing

 Testers will fully test those high
priority/high risk items

 Testers will spot-check those lower
priority items

 Sponsors have the ability to spot check
as well

Construction

 Reporting

 Daily reports (preferably web-based)
produced showing the status of each
work breakdown item

 Demonstrate estimated work, actual
work or work to date and estimated
completion

Construction

 Change

 Change happens!

 Coders determine that the envisioned
function is not possible

 Sponsors determine that functions need
revision or expansion (or even removal)

 Changes negotiated between
development and sponsors

 Changes reflected in test cases,
narratives and function design

Construction

 Change

 For changes affecting scope, ability to
quickly determine what uncompleted can
fall off

 Changes affecting other work items,
those test cases can be brought into this
work item

 Changes affecting already coded
functions, those test cases can be
brought into this work item for
regression

Construction

 End-game

 As deadlines approach, if the project is
behind, easy to determine what will/will
not be completed (instead of last
minute)

 Sponsors know continually what is and is
not complete

 Sponsors determine if more time or
resources are needed

 Sponsors determine when we are done

Testing

 Testing is built into the entire lifecycle

 Once construction is deemed
complete, team moves into a formal
System Test cycle

 Test cycle is short and targeted on
the high priority items through test
cases and narratives

 Sponsors determine when test cycle
is complete

Testing

 System Test

 Reports generated and available “live”
(real-time)

 Review board composed of development
and stakeholders classify and determine
if/when reported issues are resolved

 Changes will only be considered if
absence would invalidate deliverable

Team Structure

 Team Leadership

 Sponsors

 Project Manager (for large efforts)

 Business Analyst

 Development Manager

 Test Manager

 Team Members

 Developers

 Testers

Team Work Assignments

 Inception

 Team leadership and members are
working on inception deliverables

 Design

 Team leadership and members are
working on design deliverables under
the direction of the Business Analyst

 Some developers dedicated to
prototyping

 Some developers dedicated to
architecture

Team Work Assignments

 Construction

 Leadership managing resources/work

 Test Manager publishes tactical metrics
& status

 Developers working on framework and
functionality as test cases come available

 Testers producing test cases, responding
to audit updates and changes

 Developers maybe re-tasked to help
develop test cases

Team Work Assignments

 System Test

 Leadership managing resources/work

 Test Manager publishes tactical metrics
& status

 Testers and developers executing test
cases & narratives

 Some developers working approved
defects/changes or unfinished work

Risk Evaluation

 Impact of failure

 Feature importance (“Must”, “Should”,
“Nice”)

 Likelihood of failure

 Process complexity

 Functional complexity

 Continually evaluated through the
lifecycle

 Feeds into the determination of
testing level

Conclusion

 Lifecycle

 All team members fully engaged through
the entire lifecycle

 Sponsors involved and driving the
lifecycle (they have control)

 Changes reacted to quickly, efficiently
and with proper documentation

Conclusion

 Requirements

 Requirements gathering spread
throughout the lifecycle

 “Visual” design concept

Research

 The Deming Management Method

 Cooper Design Methodology

 Agile/SCRUM

Books

 The Deming Management Method
(Mary Walton and Edwards Deming)

 Cooper Design Methodology

The Inmates Are Running the Asylum
(Alan Cooper)

 Test As Design

Specification by Example: How Successful
Teams Deliver the Right Software (Gojko
Adzic)

http://www.amazon.com/Deming-Management-Method-Mary-Walton/dp/0399550003
http://www.amazon.com/Deming-Management-Method-Mary-Walton/dp/0399550003
http://www.amazon.com/Deming-Management-Method-Mary-Walton/dp/0399550003
http://www.amazon.com/Deming-Management-Method-Mary-Walton/dp/0399550003
http://www.amazon.com/Deming-Management-Method-Mary-Walton/dp/0399550003
http://www.amazon.com/Inmates-Are-Running-Asylum-Products/dp/0672326140
http://www.amazon.com/Inmates-Are-Running-Asylum-Products/dp/0672326140
http://www.amazon.com/Inmates-Are-Running-Asylum-Products/dp/0672326140
http://www.amazon.com/Inmates-Are-Running-Asylum-Products/dp/0672326140
http://www.amazon.com/Inmates-Are-Running-Asylum-Products/dp/0672326140
http://www.amazon.com/gp/product/1617290084
http://www.amazon.com/gp/product/1617290084
http://www.amazon.com/gp/product/1617290084
http://www.amazon.com/gp/product/1617290084
http://www.amazon.com/gp/product/1617290084
http://www.amazon.com/gp/product/1617290084
http://www.amazon.com/gp/product/1617290084

Knowledge

 Be ahead of the curve!

 Must acquire knowledge and skillsets

 Less focused on craft

 More focused on design, business need
and risk evaluation

 Be able to speak to developers and the
business in their own language

 Be able to read code (don’t panic, it is
not that hard)

Disclaimers

 This model works well for a variety of
verticals

 There are some exceptions

 Life safety (automotive, medical devices)

 Rockets

 Financial

 Risk model can still be applied, but
there will always be a high testing
cost

Questions

&

Answers

Questions?

David P. Brown (sqa@compumonk.com)

